
An Architecture and Tool for Large-scale System Control

with a manufacturing system application

Hui-Min Huang, James Albus, William Shackleford, Harry Scott, Tom Kramer,
Elena Messina, and Fred Proctor

National Institute of Standards and Technology
Gaithersburg, Maryland 20899

Abstract

This paper describes a reference architecture
that is applicable to multiple classes of
large-scale, complex real-time control
systems. An associated tool, Generic Shell,
is also described. Generic Shell employs a
set of code templates that facilitate system
development and integration. A case study
is presented.

1 Introduction

A desired large-scale manufacturing
environment may contain many pieces of
equipment that are physically distributed
and functionally integrated. The operation
of such systems may be a combination of
automatic control and manual operations. It
is imperative to use an approach that allows
easy development, testing, operation, and
maintenance of these systems. Researchers
have been pointing out that software
architecture is a viable approach [1, 2, 3, 4].

There have been several major
manufacturing architectural development
efforts. Open, Modular Architecture Control
(OMAC) [5] is industry-driven, takes a
bottom-up approach, and focuses on low-
level machine control. Computer Integrated
Manufacturing Open System Architecture
(CIMOSA) [6, 7] describes multiple views
of a system. However, CIMOSA seems to
focus on enterprise modeling and not on

low-level, time critical control subsystems.
Antsaklis and Passino described a
hierarchical control architecture, which
contains a concept of successive delegation
of duties among the defined levels [8].
However, the defined three-level
organization has not been demonstrated to
be suitable for a variety of problems. Senehi
and Kramer [9] proposed a framework,
including a terminology, that set up a
foundation for constructing control system
architectures.

We propose that an architecture should
possess the following characteristics so that
the associated benefits can be provided for
the system developers:

• An architecture is to be generic. This
makes it applicable to many types of
problems.

• An architecture is to provide a reference
model for system organization. This
provides a basis for the system to be
developed and facilitates the system’s
understandability.

• An architecture is to provide common
component and interface structures and a
common execution mechanism
throughout the entire architecture. These
make the architecture scalable and
reconfigurable to both large and small
problems, ease the maintenance tasks,
and make the components more reusable.

Fourth International Software Architecture Workshop, in Conjunction with the 22nd International Conference on
Software Engineering, Limerick, Ireland, June 4-5, 2000.

2

• An architecture is to include methods
and/or tools that guide developers
through the design and implementation
processes.

A reference model architecture, called
ISAM (Intelligent System Architecture for
Manufacturing) satisfies the first three
characteristics. A tool called Generic Shell,
addresses the fourth characteristic. Generic
Shell models the generic functions and
interfaces of ISAM with a set of C++ code
templates. Developers build a
skeleton control system by
connecting the templates. The
developers then link the application-
specific behavioral or processing
algorithms or software components
in the functional templates and
populate the interface templates.

In this paper, we describe the
generic functional unit of ISAM
first, followed by the system
structure. We then describe the
multiple layers of abstraction that
transition the architectural model to
real systems. We describe the
architecture in a way that facilitates
implementation. Modularization, object-
orientation, common process and interface
structures, and system openness are among
the benefits of our architecture and tool.

We demonstrate that, in ISAM, the generic
architecture aspects and the Generic Shell
tool aspect form an integrated conceptual
framework. An implementation is
illustrated.

2 Common Functional Unit

ISAM is based on the Real-time Control
System (RCS) reference model architecture
[10], also developed at the National Institute
of Standards and Technology. ISAM is a
hierarchical control architecture with a
generic control unit populating at all the
control levels. Specific responsibilities and
associated processing algorithms are
assigned for each of the common control
units.

ISAM is a goal or task driven control model.
A control unit generates behaviors or actions
based on the task commands that the control
unit receives. The effectiveness of the
actions or behaviors depends on the support
from the control unit’s sensory processing
and knowledge base update functions. We
call this control unit a control node. Figure 1
depicts the control node functions. A
detailed description for all the functions
follows.

Figure 1: ISAM Control Node Functions

2.1 Planning and execution in the node

The behavior generation activity is
characterized by a planning and execution
process. The planning process generates
schedules or plans. As shown in Figure 1,
the planning process begins when the job
assignor (“assign” in the figure) receives a
task command. “Assign” retrieves required
task knowledge and interprets it. This
results in a set of scheduling jobs for a set of
schedulers. ISAM specifies a scheduler for
each of the subordinate control nodes that a
control node supervises.

The schedulers (“schedule” in the figure)
perform multiple aspects of planning,
including spatial, temporal, and
coordination. The specific concerns include
coordinate frame transformation, path
generation, subtask generation and
sequencing, subtask timing assignments, and

task command

subordinate 2

schedule schedule

select

execute

simulate

execute

assign

sense

evaluate

supervisor

update
knowledge
base

schedule schedule

select

execute

simulate

execute

assign

sense

evaluate

subordinate 1

update
knowledge
base

subtask command

3

tools/ material/ timing/ peer-status
requirements.
The schedulers produce plan or schedule
candidates and send them through other
node functions, simulation and value
judgement, as shown in the figure. These
two functions verify the controllability and
execution costs for the candidates,
respectively. Plan selector (“select” in the
figure) selects the best candidate for
execution. The plans are constantly re-
evaluated and replanned. The frequency of
replanning depends on degree of uncertainty
in the environment.

Executors are responsible for executing the
generated plans. When errors occur, the
executors may perform reactive, emergency
functions to transition the node to safe
states. The schedulers may then either
replan, within the node’s assigned authority,
to attempt to achieve the original goals or
may report errors to the node’s superior
node requesting further direction. The
execution results in subtask commands
being sent to the node’s subordinate control
nodes.

2.2 Knowledge-based behavior
generation

An ISAM node performs information
processing and maintains a knowledge base.
The system knowledge in each node must be
rich and updated in real time to support the
planning and execution of the tasks. The
knowledge may include task identifiers,
plans, algorithms, resource descriptions,
data logs, shop floor layout, maps, etc. The
knowledge can be stored either externally in
databases or in-line in code, depending on
retrieval efficiency to support real-time
behavior generation.

The knowledge base is updated with sensory
information in real-time.

2.3 Functional decomposition and
aggregation

As described, a control node is decomposed
into the node functions. During

implementation, to satisfy the concern of
computation and communication load, these
node functions may be combined or further
decomposed to form a different but
corresponding computing process
configuration. Our case study, described
later in this paper, demonstrates this effect.

3 Control Nodes to Form Canonical,
Control Hierarchies

Hierarchical systems have demonstrated
efficiency in performing system control
[11]. ISAM prescribes a canonical
hierarchical control structure. High levels
handle tasks with larger spatial and temporal
scope but with less detail. Low levels
handle detailed and specific tasks that focus
on immediate temporal and spatial span. The
number of levels is scalable depending on
the scope of the systems.

As we described in section 2, the control
node function inputs task commands and
outputs subtask commands. ISAM
prescribes that this functional model is
populated throughout all the system’s
control levels. In other words, each control
level may contain a set of intelligent control
nodes, with the same generic functional
structure. The nodes at the various control
levels are connected in a task-oriented
command hierarchy. The nodes may share
knowledge horizontally and coordinate task
execution.

For example, in a manufacturing
environment, there could be a manufacturing
cell that is realized by a cell control node.
This node may supervise a set of
subordinate control nodes: { machining
workstation, inspection workstation,
assembly workstation }.

4 Multiple resolutions

Task commands from nodes to their
subordinates define a command and control
hierarchy. Task commands to the highest
level node define the system’s goals.

4

ISAM prescribes a unique task
decomposition process that transitions the
system goal into subgoals and subtasks at
each of the control levels until the control
signals at the lowest control level are
generated to drive the electrical/mechanical
devices. In other words, the task
decomposition process generates a hierarchy
of subgoals with a gradual decrease of scope
and increase of details. Developers design
task and command structures corresponding
to the goals and subgoals.

The manufacturing system cell controller
may perform a make_product task. This
task is decomposed into a subtask set {
machine_part, inspect_part, assemble_parts
} for the subordinating workstation level.
The inspect_part task may be further
decomposed into a subtask set of {
load_part, locate_part, inspect_features }.
This process continues through the
generation of motor signals to control the
inspection probe.

ISAM also contains a perception process
that performs an integration of low-level
sensed features to form high-level perceived
features. Image pixels are integrated to form
linear features. The latter, themselves, are
integrated to form surface features. The
process continues to form object features
and features of even higher levels of
abstraction. Discrete events are integrated to
proper levels of abstraction. For example,
the completion of the following three tasks,
machine_part, inspect_part, and
assemble_parts are integrated to mean that
the make_product task has been completed
at the next higher level.

5 Generic Shell: system realization

We have described the functional and
logical structure of ISAM. Now we describe
an implementation tool, Generic Shell, to
facilitate application system development.

Generic Shell is consistent with many
object-oriented concepts. In Generic Shell,
we apply many layers of inheritance,
abstraction, and generalization-refinement

relationships to transition the functional
architecture to physical, executing systems.
The ISAM model is generic and applies to
most manufacturing processes. We define a
set of more refined classes to be applied to a
subproblem domain, the discrete part
manufacturing processes. A further refined
set of classes applies to the manufacturing
inspection processes. Finally, a control
workstation for a particular inspection
machine is implemented.

Generic Shell, thus, contains multiple layers
of code templates, currently written in the
C++ language. When implementing specific
systems, we embed specific software
components or algorithms in the templates.

We specify the following types of templates:

Processing templates: As a default, we
cluster the node functions shown in Figure 1
into a processing configuration that includes
the following processes: planning (PL),
sensory processing and world modeling
(SPWM), and a set of execution processes
(EX) corresponding to the node’s
subordinate nodes. Note that the terms
“world modeling” and “knowledge base
update” are regarded as equivalent in this
paper. See reference [12] for a detailed
description of these templates.

Interface templates: We have been
applying a common message structure to
facilitate the interfaces that the ISAM
reference model prescribes [13]. The
essential interface between PL and EX deals
with the schedule. The message structure
that PL sends to EX contains a schedule.
The message directs EX to execute the
schedule. The message may also contain
pointers to the knowledge requirements for
the execution.

The essential interface between EX and the
subordinate PL is individual command
messages corresponding to the schedule
steps that the EX is executing.

The essential interface between the PL and
SPWM and EX and SPWM is a query and

5

response mechanism, to obtain specific
information to support planning.

Knowledge templates: ISAM is a task-
oriented architecture. As such, the
knowledge that is required in each node is
also based on the task that the node is to
perform.

Common forms of task knowledge include
state tables and process plans. We have
been developing a task frame model that can
serve as an integrated information structure
supporting behavior generation. The
information may include task goal and its
constraints, planning and execution states,
plan description or references to planning
algorithms or plan databases, transition
conditions, errors, knowledge requirements,
resource requirements, priority, and
performance metrics [14].

Testing and Performance Measurement:
Generic Shell includes the facility to allow
system testing and performance
measurement. Generic Shell builds in data
logging facilities for users to examine the
execution history. All the interface data
buffers are accessible to facilitate
performance analyses. Generic Shell applies
a graphic tool [13] to view system execution
status and to plot state variables, in real-
time. Generic Shell stresses using
simulation and animation to visualize
system performance. The control node
shells are also used to implement simulation
nodes to interact with controller nodes.

Figure 2: Multiple and integrated
perspectives

During system development, Generic Shell
is used with a scenario-based task
decomposition methodology to develop
ISAM-based systems [12, 15].

6 Integrated Framework

The previous sections describe the ISAM
framework. The results can be shown in an
integrated view in Figure 2. Section 2
corresponds to axis F. Sections 3 and 4
correspond to axis T. Section 5 corresponds
to axis O. An application control system
hierarchy would be:

• parallel to axis T to possess multiple
control levels,

• perpendicular to axis O with certain
distances away from the origin
because of the inheritance and
abstraction process, and

• extending along the F axis due to
the fact that the Generic Shell
models detailed control node
functions.

Previous documents provided some earlier
concepts for this framework [15, 16]. The
following case study is our latest illustration.

7 Inspection Workstation
Implementation

The NIST inspection testbed is used to study
many architectural issues, some of these are
beyond the scope of this paper [17]. We
will focus on several control nodes that are
implemented in Generic Shell.

Operators use a manufacturing inspection
system to measure a manufactured part to
find out if the part is made to the
specification. As shown in Figure 3, we
have implemented a workstation- level
controller to coordinate the execution of an
inspection operation.

The Generic Shell based control nodes are
implemented in a planner (PL) and an
executor (EX) shell. The world modeling
and sensory processing aspect is included in

6

the PL processors for computational
efficiency.

The workstation controller commands two
subordinates, a Coordinate Measuring
Machine (CMM) controller that interprets
the inspection programs and a fixturing
controller that coordinates the placement of
the part.

The CMM controller PL interprets the
inspection programs written in a standard
language and converts them into the
command language native to the control
system. The executor sends the traverse,
measure, computer vision processing, and
tool-change command messages to its
multiple subordinates. These subordinates
are not shown in Figure 3. See reference
[18] for details. The CMM controller
receives inspection data for the SPWM
function to compute for the inspection
results.

Figure 3: Inspection Control Hierarchy
(partial)

We have conducted a series of tests on this
Generic Shell based implementation. The
control system has successfully inspected a
part and generated inspection reports. See
reference [12] for details.

8 Summary and Future Work

We have presented a brief overview of a
reference model architecture, ISAM,
proposed as a common architecture for
large-scale, complex real-time control
systems. We also described a Generic Shell
approach to facilitate the system
development effort based on the ISAM
architecture. The Generic Shell approach
provides a unified system execution and
interfacing pattern. Generic Shell intends to
be a source-code level open system
approach. It allows different component or
subsystem solutions to integrate to meet
system goals. It facilitates a modularized
structure for complex systems. It intends to
provide a rigorous formalism and yet does
not induce the cost of using commercial
compute-aided system design tools.
Researchers have begun applying the
Generic Shell to other projects to
demonstrate its applicability.

For the next phase, we plan to explore
applying industrial standards, such as the
UML representation, to model the Generic
Shell templates.

References:

1 Garlan, D. and Perry, D., “Introduction to the

Special Issue on Software Architecture,”
Guest Editorial, IEEE Transaction on Software
Engineering, April 1995.

2 Ribeiro-Justo, G.R. and Cunha, P.R.F., “An
Architectural Application Framework for
Evolving Distributed Systems,” Journal of
Systems Architecture, Volume 45, No. 15,
September 1999, Elsevier Science B.V.

3 SEMATECH Technology Transfer 93061697J-
ENG, Computer Integrated Manufacturing
(CIM) Framework Specification Version 2.0,
SEMATECH, Inc., January 1998.

4 http://imtr.ornl.gov/Default.htm

7

5 http://www.arcweb.com/omac/

6 Kosanke, K., et. al., “CIMOSA: enterprise
engineering and integration,” Computers In
Industry, Volume 40, Elsevier Science, 1999.

7 http://cimosa.cnt.pl/Docs/Primer/primer5.htm

8 Antsaklis, P.J. and Passino, K.M., eds., An
Introduction to Intelligent and Autonomous
Control, Kluwer Academic Publishers,
Norwell, MA, 1993

9 Senehi, M. K.; Kramer, Thomas R.; A
Framework for Control Architectures;
International Journal of Computer Integrated
Manufacturing; Vol. 11, No. 4; 1998; pp. 347-
363.

10 J. S. Albus and A. Meystel, “A Reference
Model Architecture for Design and
Implementation of Intelligent Control in Large
and Complex Systems,” the International
Journal of Intelligent Control and Systems,
1996.

11 Y. Maximov, and A. Meystel, “Optimum
design of multiresolutional hierarchical control
systems,” Proceedings of IEEE International
symposium on intelligent control, pp 514-520,
Glasgow, UK, 1992.

12 Huang, Hui-Min, et al., “Toward a Common
Architecture for Large-scale Real-time Control
Systems ,” Accepted in the 16th IFIP World
Computer Congress, Conference on Software:
Theory and Practice (ICS2000), August 2000.

13 http://www.isd.cme.nist.gov/projects/rcs_lib/

14 Huang, H. and Senehi, K., “Task Frame
Conceptual Design,” NIST Internal Document,
1996.

15 Huang, H., “An Architecture and a
Methodology for Intelligent Control, ”IEEE
Expert, Volume 11, Number 2, April 1996, pp.
46-55, IEEE Computer Society, Washington,
D. C.

16 Huang, H., et. al., “An Open Architecture
Based Framework for Automation and
Intelligent System Control,” Invited Paper for
the IEEE Industrial Automation and Control
Conference’95, Taipei, Taiwan, May 1995.

17 Messina, E., Horst, J., Kramer, T., Huang, H.,
Tsai, T., and Amatucci, E., "A Knowledge-
Based Inspection Workstation," Proceedings
of the 1999 IEEE International Conference on
Information, Intelligence, and Systems,
Bethesda, MD, November, 1999.

18 Horst, J., “Architecture, Design Methodology,
and Component-Based Tools for a Real-Time
Inspection System”, The 3rd IEEE International
Symposium on Object-oriented Real-time
distributed Computing (ISORC 2000), Newport
Beach, CA, March 15-17, 2000.

